4.7 Article

Efficiency and Accuracy Verification of the Explicit Numerical Manifold Method for Dynamic Problems

期刊

ROCK MECHANICS AND ROCK ENGINEERING
卷 48, 期 3, 页码 1131-1142

出版社

SPRINGER WIEN
DOI: 10.1007/s00603-014-0613-x

关键词

Computational efficiency; Computational accuracy; Explicit time integration algorithm; Numerical manifold method; Stress wave propagation

向作者/读者索取更多资源

The original numerical manifold method (NMM) employs an implicit time integration scheme to achieve higher computational accuracy, but its efficiency is relatively low, especially when the open-close iterations of contact are involved. To improve its computational efficiency, a modified version of the NMM based on an explicit time integration algorithm is proposed in this study. The lumped mass matrix, internal force and damping vectors are derived for the proposed explicit scheme. A calibration study on P-wave propagation along a rock bar is conducted to investigate the efficiency and accuracy of the developed explicit numerical manifold method (ENMM) for wave propagation problems. Various considerations in the numerical simulations are discussed, and parametric studies are carried out to obtain an insight into the influencing factors on the efficiency and accuracy of wave propagation. To further verify the capability of the proposed ENMM, dynamic stability assessment for a fractured rock slope under seismic effect is analysed. It is shown that, compared to the original NMM, the computational efficiency of the proposed ENMM can be significantly improved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据