4.7 Article

Experiments on Methane Displacement by Carbon Dioxide in Large Coal Specimens

期刊

ROCK MECHANICS AND ROCK ENGINEERING
卷 44, 期 5, 页码 579-589

出版社

SPRINGER WIEN
DOI: 10.1007/s00603-011-0143-8

关键词

Carbon dioxide, CO2; Geological storage in coal beds; Coal-bed methane, CH4; Displacement injection; Permeability

资金

  1. Program for New Century Excellent Talents in University of China [NCET-07-0594]
  2. National Natural Science Foundation of China [50874078]

向作者/读者索取更多资源

Carbon dioxide (CO2) is considered to be the most important greenhouse gas in terms of overall effect. CO2 geological storage in coal beds is of academic and industrial interest because of economic synergies between greenhouse gas sequestration and coal bed methane (CH4) recovery by displacement/adsorption. Previously, most work focused on either theoretical analyses and mathematical simulations or gas adsorption-desorption experiments using coal particles of millimeter size or smaller. Those studies provided basic understanding of CH4 recovery by CO2 displacement in coal fragments, but more relevant and realistic investigations are still rare. To study the processes more realistically, we conducted experimental CH4 displacement by CO2 and CO2 sequestration with intact 100 x 100 x 200 mm coal specimens. The coal specimen permeability was measured first, and results show that the permeability of the specimen is different for CH4 and CO2; the CO2 permeability was found to be at least two orders of magnitude greater than that for CH4. Simultaneously, a negative exponential relationship between the permeability and the applied mean stress on the specimen was found. Under the experimental stress conditions, 17.5-28.0 volumes CO2 can be stored in one volume of coal, and the displacement ratio CO2-CH4 is as much as 7.0-13.9. The process of injection, adsorption and desorption, displacement, and output of gases proceeds smoothly under an applied constant pressure differential, and the CH4 content in the output gas amounted to 20-50% at early stages, persisting to 10-16% during the last stage of the experiments. Production rate and CH4 fraction are governed by complex factors including initial CH4 content, the pore and fissure fabric of the coal, the changes in this fabric as the result of differential adsorption of CO2, the applied stress, and so on. During CO2 injection and CH4 displacement, the coal can swell from effects of gas adsorption and desorption, leading to changes in the microstructure of the coal itself. Artificial stimulation (e.g. hydraulic fracturing) to improve coalbed transport properties for either CO2 sequestration or enhanced coal bed methane recovery will be necessary. The interactions of large-scale induced fractures with the fabric at the scale of observable fissures and fractures in the laboratory specimens, as well as to the pore scale processes associated with adsorption and desorption, remain of profound interest and a great challenge.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据