4.5 Article

Flight path planning for unmanned aerial vehicles with landmark-based visual navigation

期刊

ROBOTICS AND AUTONOMOUS SYSTEMS
卷 62, 期 2, 页码 142-150

出版社

ELSEVIER
DOI: 10.1016/j.robot.2013.11.004

关键词

Route planning; Kinodynamic planning; Unmanned aerial vehicles; Landmark-based visual navigation; Shortest paths in networks

向作者/读者索取更多资源

In this paper we present an algorithm to determine a shortest trajectory of a fixed-wing UAV in scenarios with no-fly areas. The innovative feature is that not only the kinematic and dynamic properties, but also the navigational capabilities of the air vehicle are taken into account. We consider a UAV with landmark-based visual navigation, a technique which can cope with long-term GPS outages. A navigation update is obtained by matching onboard images of selected landmarks with internally stored geo-referenced images. To achieve regular updates, a set of landmarks must be identified which are passed by the air vehicle in a proper sequence and with appropriate overflight directions. The algorithm is based on a discretization of the airspace by a specific network. Each path in the network corresponds to a trajectory which avoids the no-fly areas and respects the flight performance of the air vehicle. Full functionality of the navigation can be ensured by dynamically adapting the network to the environmental conditions. A shortest trajectory is then obtained by the application of standard network algorithms. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据