4.5 Article

High-throughput analysis of type I-E CRISPR/Cas spacer acquisition in E-coli

期刊

RNA BIOLOGY
卷 10, 期 5, 页码 716-725

出版社

TAYLOR & FRANCIS INC
DOI: 10.4161/rna.24325

关键词

CRISPR adaptation; CRISPR; Cas systems; Escherichia coli; bacteriophage; high-throughput sequencing

资金

  1. NIH [GM10407]
  2. Russian Foundation for Basic Research
  3. Molecular and Cellular Biology Russian Academy of Sciences

向作者/读者索取更多资源

In Escherichia coli, the acquisition of new CRISPR spacers is strongly stimulated by a priming interaction between a spacer in CRISPR RNA and a protospacer in foreign DNA. Priming also leads to a pronounced bias in DNA strand from which new spacers are selected. Here, ca. 200,000 spacers acquired during E. coli type I-E CRISPR/Cas-driven plasmid elimination were analyzed. Analysis of positions of plasmid protospacers from which newly acquired spacers have been derived is inconsistent with spacer acquisition machinery sliding along the target DNA as the primary mechanism responsible for strand bias during primed spacer acquisition. Most protospacers that served as donors of newly acquired spacers during primed spacer acquisition had an AAG protospacer adjacent motif, PAM. Yet, the introduction of multiple AAG sequences in the target DNA had no effect on the choice of protospacers used for adaptation, which again is inconsistent with the sliding mechanism. Despite a strong preference for an AAG PAM during CRISPR adaptation, the AAG (and CTT) triplets do not appear to be avoided in known E. coli phages. Likewise, PAM sequences are not avoided in Streptococcus thermophilus phages, indicating that CRISPR/Cas systems may not have been a strong factor in shaping host-virus interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据