4.6 Article

Stochastic Measures of Network Resilience: Applications to Waterway Commodity Flows

期刊

RISK ANALYSIS
卷 34, 期 7, 页码 1317-1335

出版社

WILEY
DOI: 10.1111/risa.12175

关键词

Copeland Score; infrastructure; networks; resilience; stocastic ranking

向作者/读者索取更多资源

Given the ubiquitous nature of infrastructure networks in today's society, there is a global need to understand, quantify, and plan for the resilience of these networks to disruptions. This work defines network resilience along dimensions of reliability, vulnerability, survivability, and recoverability, and quantifies network resilience as a function of component and network performance. The treatment of vulnerability and recoverability as random variables leads to stochastic measures of resilience, including time to total system restoration, time to full system service resilience, and time to a specific alpha% resilience. Ultimately, a means to optimize network resilience strategies is discussed, primarily through an adaption of the Copeland Score for nonparametric stochastic ranking. The measures of resilience and optimization techniques are applied to inland waterway networks, an important mode in the larger multimodal transportation network upon which we rely for the flow of commodities. We provide a case study analyzing and planning for the resilience of commodity flows along the Mississippi River Navigation System to illustrate the usefulness of the proposed metrics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据