4.6 Article

A combined Monte Carlo and possibilistic approach to uncertainty propagation in event tree analysis

期刊

RISK ANALYSIS
卷 28, 期 5, 页码 1309-1325

出版社

BLACKWELL PUBLISHING
DOI: 10.1111/j.1539-6924.2008.01085.x

关键词

epistemic uncertainty; event tree analysis; fuzzy and possibilistic distributions; Monte Carlo sampling; uncertainty propagation

资金

  1. European Union [FIS5-1999-00250]

向作者/读者索取更多资源

In risk analysis, the treatment of the epistemic uncertainty associated to the probability of occurrence of an event is fundamental. Traditionally, probabilistic distributions have been used to characterize the epistemic uncertainty due to imprecise knowledge of the parameters in risk models. On the other hand, it has been argued that in certain instances such uncertainty may be best accounted for by fuzzy or possibilistic distributions. This seems the case in particular for parameters for which the information available is scarce and of qualitative nature. In practice, it is to be expected that a risk model contains some parameters affected by uncertainties that may be best represented by probability distributions and some other parameters that may be more properly described in terms of fuzzy or possibilistic distributions. In this article, a hybrid method that jointly propagates probabilistic and possibilistic uncertainties is considered and compared with pure probabilistic and pure fuzzy methods for uncertainty propagation. The analyses are carried out on a case study concerning the uncertainties in the probabilities of occurrence of accident sequences in an event tree analysis of a nuclear power plant.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据