4.3 Article

Computational analysis of the mutations in BAP1, PBRM1 and SETD2 genes reveals the impaired molecular processes in Renal Cell Carcinoma

期刊

ONCOTARGET
卷 6, 期 31, 页码 32161-32168

出版社

IMPACT JOURNALS LLC
DOI: 10.18632/oncotarget.5147

关键词

mutations; polymorphisms; predictions; RCC; computational

向作者/读者索取更多资源

Clear cell Renal Cell Carcinoma (ccRCC) is due to loss of von Hippel-Lindau (VHL) gene and at least one out of three chromatin regulating genes BRCA1-associated protein-1 (BAP1), Polybromo-1 (PBRM1) and Set domain-containing 2 (SETD2). More than 350, 700 and 500 mutations are known respectively for BAP1, PBRM1 and SETD2 genes. Each variation damages these genes with different severity levels. Unfortunately for most of these mutations the molecular effect is unknown, so precluding a severity classification. Moreover, the huge number of these gene mutations does not allow to perform experimental assays for each of them. By bioinformatic tools, we performed predictions of the molecular effects of all mutations lying in BAP1, PBRM1 and SETD2 genes. Our results allow to distinguish whether a mutation alters protein function directly or by splicing pattern destruction and how much severely. This classification could be useful to reveal correlation with patients' outcome, to guide experiments, to select the variations that are worth to be included in translational/association studies, and to direct gene therapies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据