4.1 Review

The genetic landscape of Parkinson's disease

期刊

REVUE NEUROLOGIQUE
卷 174, 期 9, 页码 628-643

出版社

MASSON EDITEUR
DOI: 10.1016/j.neurol.2018.08.004

关键词

Parkinson's disease; Genetics; Mendelian transmission; Genetic risk; Genotype-phenotype correlation; Genetic counselling

资金

  1. French programme Investissement d'avenir [ANR-10-IAIHU-06]

向作者/读者索取更多资源

The cause of Parkinson's disease (PD) remains unknown in most patients. Since 1997, with the first genetic mutation known to cause PD described in SNCA gene, many other genes with Mendelian inheritance have been identified. We summarize genetic, clinical and neuropathological findings related to the 27 genes reported in the literature since 1997, associated either with autosomal dominant (AD): LRRK2, SNCA, VPS35, GCH1, ATXN2, DNAJC13, TMEM230, GIGYF2, HTRA2, RIC3, EIF4G1, UCHL1, CHCHD2, and GBA; or autosomal recessive (AR) inheritance: PRKN, PINK1, DJ1, ATP13A2, PLA2G6, FBXO7, DNAJC6, SYNJ1, SPG11, VPS13C, PODXL, and PTRHD1; or an X-linked transmission: RAB39B. Clinical and neuropathological variability among genes is great. LRRK2 mutation carriers present a phenotype similar to those with idiopathic PD whereas, depending on the SNCA mutations, the phenotype ranges from early onset typical PD to dementia with Lewy bodies, including many other atypical forms. DNAJC6 nonsense mutations lead to a very severe phenotype whereas DNAJC6 missense mutations cause a more typical form. PRKN, PINK1 and DJ1 cases present with typical early onset PD with slow progression, whereas other AR genes present severe atypical Parkinsonism. RAB39B is responsible for a typical phenotype in women and a variable phenotype in men. GBA is a major PD risk factor often associated with dementia. A growing number of reported genes described as causal genes (DNAJC13, TMEM230, GIGYF2, HTRA2, RIC3, EIF4G1, UCHL1, and CHCHD2) are still awaiting replication or indeed have not been replicated, thus raising questions as to their pathogenicity. Phenotypic data collection and next generation sequencing of large numbers of cases and controls are needed to differentiate pathogenic dominant mutations with incomplete penetrance from rare, nonpathogenic variants. Although known genes cause a minority of PD cases, their identification will lead to a better understanding their pathological mechanisms, and may contribute to patient care, genetic counselling, prognosis determination and finding new therapeutic targets. (C) 2018 Published by Elsevier Masson SAS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据