4.3 Article

Metabolic reprogramming of metastatic breast cancer and melanoma by let-7a microRNA

期刊

ONCOTARGET
卷 6, 期 4, 页码 2451-2465

出版社

IMPACT JOURNALS LLC
DOI: 10.18632/oncotarget.3235

关键词

ROS; OXPHOS; glycolysis; mitochondria; HMOX1

资金

  1. Southern and Eastern Norway Regional Health Authority, Norwegian Research Council
  2. Oslo University Hospital

向作者/读者索取更多资源

Let-7 microRNAs (miRNAs) are highly conserved well-established promoters of terminal differentiation that are expressed in healthy adult tissues and frequently repressed in cancer cells. The tumor suppressive role of let-7 in a variety of cancers in vitro and in vivo has been widely documented and prompted these miRNAs to be candidate genes for miRNA replacement therapy. In this study we described a new role of let-7a in reprogramming cancer metabolism, recently identified as a new hallmark of cancer. We show that let-7a down-regulates key anabolic enzymes and increases both oxidative phosphorylation and glycolysis in triple-negative breast cancer and metastatic melanoma cell lines. Strikingly, the accelerated glycolysis coexists with drastically reduced cancer features. Moreover, let-7a causes mitochondrial ROS production concomitant with the up-regulation of oxidative stress responsive genes. To exploit these increased ROS levels for therapeutic purposes, we combined let-7a transfection with the chemotherapeutic drug doxorubicin. In both cancer types let-7a increased cell sensitivity to doxorubicin. Pre-treatment with N-acetyl cysteine (NAC) totally abolished this effect, indicating that the increased doxorubicin sensitivity of let-7a cells depends on the redox pathway. We thus have demonstrated that let-7a plays a prominent role in regulating energy metabolism in cancer cells, further expanding its therapeutic potential.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据