4.3 Article

SHIP represses lung inflammation and inhibits mammary tumor metastasis in BALB/c mice

期刊

ONCOTARGET
卷 7, 期 4, 页码 3677-3691

出版社

IMPACT JOURNALS LLC
DOI: 10.18632/oncotarget.6611

关键词

SHIP; BALB/c; 4T1; metastasis; myeloid cells

资金

  1. Canadian Cancer Society Research Institute
  2. Terry Fox Research Institute [020395]
  3. Lotte & John Hecht Memorial Foundation
  4. Canadian Institutes of Health Research [MOP-126138]
  5. Michael Smith Foundation for Health Research (MSFHR) Trainee Award
  6. Canadian Institutes of Health Research (CIHR) Studentship
  7. Canadian Breast Cancer Foundation (BC/Yukon Division)
  8. Frederick Banting and Charles Best Canada Graduate Scholarships from CIHR
  9. University of British Columbia

向作者/读者索取更多资源

SH2-containing-inositol-5'-phosphatase (SHIP) is a negative regulator of the phosphatidylinositol-3-kinase pathway in hematopoietic cells and limits the development of leukemias and lymphomas. The potential role of SHIP in solid tumor development and metastasis remains unknown. While SHIP restricts the aberrant development of myeloid cells in C57BL/6 mice, there are conflicting reports regarding the effect of SHIP deletion in BALB/c mice with important consequences for determining the influence of SHIP in different model tumor systems. We generated SHIP-/-BALB/c mice and challenged them with syngeneic non-metastatic 67NR or metastatic 4T1 mammary tumors. We demonstrate that SHIP restricts the development, alternative-activation, and immunosuppressive function of myeloid cells in tumor-free and tumor-bearing BALB/c mice. Tumor-free SHIP-/-BALB/c mice exhibited pulmonary inflammation, myeloid hyperplasia, and M2-polarized macrophages and this phenotype was greatly exacerbated by 4T1, but not 67NR, tumors. 4T1-bearing SHIP-/- mice rapidly lost weight and died from necrohemorrhagic inflammatory pulmonary disease, characterized by massive infiltration of pulmonary macrophages and myeloid-derived suppressor cells that were more M2-polarized and immunosuppressive than wild-type cells. Importantly, while SHIP loss did not affect primary tumor growth, 4T1-bearing SHIP-/- mice had 7.5-fold more metastatic tumor cells in their lungs than wild-type mice, consistent with the influence of immunosuppressive myeloid cells on metastatic growth. Our findings identify the hematopoietic cell-restricted protein SHIP as an intriguing target to influence the development of solid tumor metastases, and support development of SHIP agonists to prevent the accumulation of immunosuppressive myeloid cells and tumor metastases in the lungs to improve treatment of metastatic breast cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据