4.3 Article

Decrease of 5hmC in gastric cancers is associated with TET1 silencing due to with DNA methylation and bivalent histone marks at TET1 CpG island 3′-shore

期刊

ONCOTARGET
卷 6, 期 35, 页码 37647-37662

出版社

IMPACT JOURNALS LLC
DOI: 10.18632/oncotarget.6069

关键词

gastric cancer; TET1; DNA methylation; 5-hydroxymethylcytosine; 3 '-shore; bivalent mark

资金

  1. National Research Foundation of Korea (NRF) - Korea government (MSIP) [2011-0030049, 2012M3A9B4027954]
  2. KRIBB Research Initiative Grant
  3. National Research Foundation of Korea [2011-0030049, 2012M3A9B4027954] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Recent evidence has shown that the level of 5-hydroxymethylcytosine (5hmC) in chromosomal DNA is aberrantly decreased in a variety of cancers, but whether this decrease is a cause or a consequence of tumorigenesis is unclear. Here we show that, in gastric cancers, the 5hmC decrease correlates with a decrease in ten-eleven translocation 1 (TET1) expression, which is strongly associated with metastasis and poor survival in patients with gastric cancer. In gastric cancer cells, TET1-targeted siRNA induced a decrease in 5hmC, whereas TET1 overexpression induced an increase in 5hmC and reduced cell proliferation, thus correlating decreased 5hmC with gastric carcinogenesis. We also report the epigenetic signatures responsible for regulating TET1 transcription. Methyl-CpG Binding Domain Sequencing and Reduced Representation Bisulfite Sequencing identified unique CpG methylation signatures at the CpG island 3'-shore region located 1.3 kb from the transcription start site of TET1 in gastric tumor cells but not in normal mucosa. The luciferase activity of constructs with a methylated 3'-shore sequence was greatly decreased compared with that of an unmethylated sequence in transformed gastric cancer cells. In gastric cancer cells, dense CpG methylation in the 3'-shore was strongly associated with TET1 silencing and bivalent histone marks. Thus, a decrease in 5hmC may be a cause of gastric tumorigenesis owing to a decrease in TET1 expression through DNA methylation coupled with bivalent marks in the 3'-shore of TET1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据