4.8 Article

Fano resonances in nanoscale structures

期刊

REVIEWS OF MODERN PHYSICS
卷 82, 期 3, 页码 2257-2298

出版社

AMER PHYSICAL SOC
DOI: 10.1103/RevModPhys.82.2257

关键词

-

资金

  1. Australian Research Council

向作者/读者索取更多资源

Modern nanotechnology allows one to scale down various important devices (sensors, chips, fibers, etc.) and thus opens up new horizons for their applications. The efficiency of most of them is based on fundamental physical phenomena, such as transport of wave excitations and resonances. Short propagation distances make phase-coherent processes of waves important. Often the scattering of waves involves propagation along different paths and, as a consequence, results in interference phenomena, where constructive interference corresponds to resonant enhancement and destructive interference to resonant suppression of the transmission. Recently, a variety of experimental and theoretical work has revealed such patterns in different physical settings. The purpose of this review is to relate resonant scattering to Fano resonances, known from atomic physics. One of the main features of the Fano resonance is its asymmetric line profile. The asymmetry originates from a close coexistence of resonant transmission and resonant reflection and can be reduced to the interaction of a discrete (localized) state with a continuum of propagation modes. The basic concepts of Fano resonances are introduced, their geometrical and/or dynamical origin are explained, and theoretical and experimental studies of light propagation in photonic devices, charge transport through quantum dots, plasmon scattering in Josephson-junction networks, and matter-wave scattering in ultracold atom systems, among others are reviewed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据