4.5 Article

The DCU laser ion source

期刊

REVIEW OF SCIENTIFIC INSTRUMENTS
卷 81, 期 4, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3374123

关键词

copper; ion beams; ion sources; plasma diagnostics; plasma production by laser; plasma sources; plasma-beam interactions; Q-switching

资金

  1. Enterprise Ireland [SC/2003/0180]

向作者/读者索取更多资源

Laser ion sources are used to generate and deliver highly charged ions of various masses and energies. We present details on the design and basic parameters of the DCU laser ion source (LIS). The theoretical aspects of a high voltage (HV) linear LIS are presented and the main issues surrounding laser-plasma formation, ion extraction and modeling of beam transport in relation to the operation of a LIS are detailed. A range of laser power densities (I similar to 10(8)-10(11) W cm(-2)) and fluences (F=0.1-3.9 kJ cm(-2)) from a Q-switched ruby laser (full-width half-maximum pulse duration similar to 35 ns, lambda=694 nm) were used to generate a copper plasma. In basic operating mode, laser generated plasma ions are electrostatically accelerated using a dc HV bias (5-18 kV). A traditional einzel electrostatic lens system is utilized to transport and collimate the extracted ion beam for detection via a Faraday cup. Peak currents of up to I similar to 600 mu A for Cu+ to Cu3+ ions were recorded. The maximum collected charge reached 94 pC (Cu2+). Hydrodynamic simulations and ion probe diagnostics were used to study the plasma plume within the extraction gap. The system measured performance and electrodynamic simulations indicated that the use of a short field-free (L=48 mm) region results in rapid expansion of the injected ion beam in the drift tube. This severely limits the efficiency of the electrostatic lens system and consequently the sources performance. Simulations of ion beam dynamics in a continuous einzel array were performed and experimentally verified to counter the strong space-charge force present in the ion beam which results from plasma extraction close to the target surface. Ion beam acceleration and injection thus occur at high pressure. In enhanced operating mode, peak currents of 3.26 mA (Cu2+) were recorded. The collected currents of more highly charged ions (Cu4+-Cu6+) increased considerably in this mode of operation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据