4.5 Article

A new cavity based absorption instrument for detection of water isotopologues in the upper troposphere and lower stratosphere

期刊

REVIEW OF SCIENTIFIC INSTRUMENTS
卷 80, 期 4, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3117349

关键词

atmospheric humidity; atmospheric measuring apparatus; infrared spectrometers; isotopes; stratosphere; troposphere; water

向作者/读者索取更多资源

We describe here the Harvard integrated cavity output spectroscopy (ICOS) isotope instrument, a mid-IR infrared spectrometer using ICOS to make in situ measurements of the primary isotopologues of water vapor (H(2)O, HDO, and H(2)(18)O) in the upper troposphere and lower stratosphere (UTLS). The long path length provided by ICOS provides the sensitivity and accuracy necessary to measure these or other trace atmospheric species at concentrations in the ppbv range. The Harvard ICOS isotope instrument has been integrated onto NASA's WB-57 high-altitude research aircraft and to date has flown successfully in four field campaigns from winter 2004-2005 to the present. Off-axis alignment and a fully passive cavity ensure maximum robustness against the vibrationally hostile aircraft environment. The very simple instrument design permitted by off-axis ICOS is also helpful in minimizing contamination necessary for accurate measurements in the dry UTLS region. The instrument is calibrated in the laboratory via two separate water addition systems and crosscalibrated against other instruments. Calibrations have established an accuracy of 5% for all species. The instrument has demonstrated measurement precision of 0.14 ppmv, 0.10 ppbv, and 0.16 ppbv in 4 s averages for H(2)O, HDO, and H(2)(18)O, respectively. At a water vapor mixing ratio of 5 ppmv the isotopologue ratio precision is 50% and 30% for delta D and delta(18)O, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据