4.5 Article

Sparsity enhancement for blind deconvolution of ultrasonic signals in nondestructive testing application

期刊

REVIEW OF SCIENTIFIC INSTRUMENTS
卷 79, 期 1, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2836263

关键词

-

向作者/读者索取更多资源

The received signal in ultrasonic pulse-echo inspection can be modeled as a convolution between an impulse response and the reflection sequence, which is the impulse characteristic of the inspected object. Deconvolution aims at approximately inverting this process to improve the time resolution so that the overlap between echoes from closely spaced reflectors becomes small. This paper presents a modified minimum entropy blind deconvolution algorithm for deconvolving ultrasonic signals. Enhancement of the resolution is achieved by using the presented method. In addition, the presented approach will, in many cases, lead to a faster computation. A nonlinear function is the key point to the efficiency of the modified blind deconvolution algorithm, which is used to increase the sparsity of the iteration output and to decrease the influence of the added noise by replacing each iteration output by output of the nonlinear function. Simulations showed the efficiency of the modification as compared with minimum entropy deconvolution when deconvolving synthetic ultrasonic signals. Experimental results using real ultrasonic data evaluated further that the exact solution consistently yields good performance. The thickness of a thin steel sample can be calculated by the modified blind deconvolution filter with a reasonable accuracy. (c) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据