4.4 Article

Regenerating Topsoil Functionality in Four Drastically Disturbed Soil Types by Compost Incorporation

期刊

RESTORATION ECOLOGY
卷 17, 期 1, 页码 24-32

出版社

WILEY
DOI: 10.1111/j.1526-100X.2007.00329.x

关键词

compost; disturbed soils; erosion; plant available water; revegetation

类别

向作者/读者索取更多资源

The low water-holding capacity and low nutrient levels of roadcuts in northern California cause many of these disturbed areas to remain chronically barren. Yard waste compost was incorporated into four nonvegetated substrates found along roadcuts (decomposed granite [DG], lahar, serpentine, and sandstone) in order to regenerate topsoil infiltration, water-holding capacity, and nutrient availability. Soil physical and chemical properties, as well as the vegetative response of a native perennial grass, were compared between treatments (non-tilled, tilled, and tilled with compost amendment). Tillage and compost addition decreased soil bulk density compared to the non-tilled treatment, and the compost treatment increased the soil carbon and nitrogen contents compared to the non-tilled and tilled treatments. Tillage alone resulted in an increase in saturated hydraulic conductivity in soils that did not contain a large amount of coarse fragments. Tillage also reduced sediment loss in all soils except the DG. Foliar C-13 content did not predict water stress consistently between treatments. The incorporation of yard waste compost increased plant available water in coarse but not in fine-textured soils, and aboveground plant biomass was significantly greater in the compost treatment than in either of the other treatments. Although the incorporation of yard waste compost generated the greatest revegetation success, tillage alone may be a sufficient treatment if residual soils have adequate nutrient levels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据