4.6 Review

Emerging evidence of epithelial-to-mesenchymal transition in lung carcinogenesis

期刊

RESPIROLOGY
卷 17, 期 7, 页码 1048-1059

出版社

WILEY
DOI: 10.1111/j.1440-1843.2012.02173.x

关键词

cell biology; epithelial cell; lung cancer; molecular biology; pathology

资金

  1. Japan Society for the Promotion of Science and Global Center of Excellence (COE) programme at Nagoya University Graduate School of Medicine [23591145, 21390257]
  2. Japan's Ministry of Education, Culture, Sports, Science and Technology
  3. Grants-in-Aid for Scientific Research [21390257, 23591145] Funding Source: KAKEN

向作者/读者索取更多资源

The epithelial-to-mesenchymal transition (EMT) is a developmental programme that regulates embryonic morphogenesis and involves significant morphological and molecular changes in cells. Experimental models have revealed that EMT also contributes to various malignant features of cancer cells, including motile, invasive, anti-apoptotic and stem-like phenotypes. Clinically, correlative studies have indicated that mesenchymal-like features of tumour cells are associated with poor tumour differentiation as well as worse patient prognosis. Nevertheless, due to its transitory nature, demonstration of an actual occurrence of EMT during human carcinogenesis is challenging, and most of the evidence to date has been limited to breast and colorectal cancers. However, recent studies suggest that EMT may occur during lung cancer development, although such evidence is still limited. We propose three approaches for obtaining direct evidence of EMT in human cancers and use these criteria to review the available data. We suggest that multiple intrinsic and extrinsic factors cooperatively induce EMT in lung cancer. Intrinsic factors include oncogenic genetic changes such as mutant K-RAS. Extrinsic factors are associated with a tumour microenvironment that is inflammatory and hypoxic. The induction of EMT is primarily mediated by various EMT-inducing transcription factors that suppress E-cadherin expression, including SLUG and ZEB1. miR-200 family expression can reverse EMT by suppressing EMT- inducing transcription factors. Obviously, more data demonstrating the clinical relevance of EMT in lung cancer are required, and further elucidation of how EMT is regulated in lung cancer will enable us to develop novel therapeutics that specifically target molecules with critical roles in EMT.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据