4.6 Article

Repair and regeneration of tracheal surface epithelium and submucosal glands in a mouse model of hypoxic-ischemic injury

期刊

RESPIROLOGY
卷 17, 期 7, 页码 1101-1113

出版社

WILEY
DOI: 10.1111/j.1440-1843.2012.02204.x

关键词

airway epithelium; lung stem cell; repair and regeneration; submucosal gland and duct

资金

  1. CIRM [RN2-00904-1]
  2. NIH/NHLBI [R01 HL094561]
  3. Gwynne Hazen Cherry Memorial Laboratories

向作者/读者索取更多资源

Background and objective: The heterotopic syngeneic tracheal transplant mouse model is an acute hypoxic-ischemic injury model that undergoes complete repair and regeneration. We hypothesized that the repair and regeneration process of the surface epithelium and submucosal glands would occur in a reproducible pattern that could be followed by the expression of specific markers of epithelial cell types. Methods: We used the syngeneic heterotopic tracheal transplant model to develop a temporal and spatial map of cellular repair and regeneration by examining the tracheal grafts at post-transplant days 1, 3, 5, 7, 10 and 14. We used pulsed BrdU and immunofluorescent staining to identify and follow proliferating and repairing cell populations. Results: We confirmed the reproducibility of the injury and repair in the model and we found a distinct sequence of reappearance of the various stem/progenitor and differentiated cell populations of the tracheal surface epithelium and submucosal glands. In the initial phase, the basal and duct cells that survived the injury proliferated to re-epithelialize the basement membrane with K5 and K14 expressing cells. Then these cells proliferated further and differentiated to restore the function of the epithelium. During this repair process, TROP-2 marked all repairing submucosal gland tubules and ducts. Non-CCSP-expressing serous cells were found to differentiate 45 days before Clara, mucus and ciliated cells. Conclusions: Improving our understanding of the reparative process of the airway epithelium will allow us to identify cell-specific mechanisms of repair that could be used as novel therapeutic approaches for abnormal repair leading to airway diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据