4.5 Article Proceedings Paper

Fabrication and sensing property for conducting polymer nanowire-based biosensor for detection of immunoglobulin G

期刊

RESEARCH ON CHEMICAL INTERMEDIATES
卷 40, 期 7, 页码 2565-2570

出版社

SPRINGER
DOI: 10.1007/s11164-014-1669-7

关键词

Conducting polymer nanowire; Biosensor; Electrospinning; Surface immobilization

资金

  1. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT & Future Planning [2008-0061891]

向作者/读者索取更多资源

Conducting polymers are excellent sensing materials in the design of bioanalytical sensors because of their electronic conductivity, low energy optical transitions, biocompatibility, and room temperature operation. Among them, Polypyrrole (Ppy) is one of the most extensively used conducting polymers because of a number of properties such as redox activity, rapid electron transfer, and ability to link a variety of biomolecules to pyrrole groups by chemical treatment. In this study, Ppy nanowires were synthesized by an electrospinning method. The nanowires were prepared from a solution mixture of Ppy and poly(ethylene oxide). The method of detection in such a device is based on the selective binding of antigen onto an antibody that is covalently attached to the nanowires. Thus, anti-IgG was immobilized on Ppy nanowires using an EDC {[N-(3-dimethyl aminopropyl)-N-2-ethylcarbodiimide hydrochloride]}-NHS(N-hydrosuccinimide) modified technique. Fluorescence images of BSA-FITC (fluorescein isothiocyanate labeling of bovine serum albumin) conjugation demonstrated that antibody was functionalized on the Ppy nanowires without non-specific binding and facilitated selective detection of antigen. Current-voltage (I-V) characterization was used to monitor the change in the conductivity of nanowires while the specific binding interaction occurred. These results of electrical properties enable Ppy nanowire-based biosensors to detect biomolecules in real-time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据