4.5 Review

A review on sources, toxicity and remediation technologies for removing arsenic from drinking water

期刊

RESEARCH ON CHEMICAL INTERMEDIATES
卷 40, 期 2, 页码 447-485

出版社

SPRINGER
DOI: 10.1007/s11164-012-1000-4

关键词

Arsenic; Toxicity; Source; Removal techniques

向作者/读者索取更多资源

Arsenic is a natural element found in the environment in organic and inorganic forms. The inorganic form is much more toxic and is found in ground water, surface water and many foods. This form is responsible for many adverse health effects like cancer (skin, lung, liver, kidney and bladder mainly), and cardiovascular and neurological effects. The estimated number of people in Bangladesh in 1998 exposed to arsenic concentrations above 0.05 mg/l is 28-35 million, and the number of those exposed to more than 0.01 mg/l is 46-57 million. The estimated number of people in West Bengal, India (the border province to Bangladesh), in 1997 actually using arsenic-rich water is more than 1 million for concentrations above 0.05 mg/l and is 1.3 million for concentrations above 0.01 mg/l. The United States Environmental Protection Agency (USEPA) has estimated that 13 million of the US population are exposed to arsenic in drinking water at 0.01 mg/l. The situation has prevailed for more than 10 years and is more severe now. The USEPA lowered the maximum contaminant level (MCL) for drinking water arsenic from 50 to 10 mu g/l in 2001 based on international data analysis and research. This recommendation is now on hold. The level of 10 ppb become standard in the European Union (EU) in 2001. Arsenic may be found in water flowing through arsenic-rich rocks. The source is diverse. These include the earth's crust, introduced into water through the dissociation of minerals and ores, industrial effluents to water, combustion of fossil fuels and seafoods. Arsenic-removal methods are coagulation (ferric sulfate, ferrous sulfate, ferric chloride, aluminum sulfate, copper sulfate, and calcium hydroxide as coagulants), adsorption (activated carbon, activated alumina, activated bauxite) ion exchange, bio-sorption, etc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据