4.7 Review

Complex plasmas: a laboratory for strong correlations

期刊

REPORTS ON PROGRESS IN PHYSICS
卷 73, 期 6, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0034-4885/73/6/066501

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft [SFB-TR 24, A3, A5, A7]

向作者/读者索取更多资源

Strong correlations-cooperative behavior due to many-particle interactions-are omnipresent in nature. They occur in electrolytic solutions, dense plasmas, ultracold ions and atomic gases in traps, complex (dusty) plasmas, electrons and excitons in quantum dots and the quark-gluon plasma. Correlation effects include the emergence of long-range order, of liquid-like or crystalline structures and collective dynamic properties (collective modes). The observation and experimental analysis of strong correlations are often difficult, requiring, in many cases, extreme conditions such as very low temperatures or high densities. An exception is complex plasmas where strong coupling can be easily achieved, even at room temperature. These systems feature the strongest correlations reported so far and experiments allow for an unprecedented precision and full single-particle resolution of the stationary and time-dependent many-particle behavior. The governing role of the interactions in strongly correlated systems gives rise to many universal properties observed in all of them. This makes the analysis of one particular system interesting for many others. This motivates the goal of this paper which is to give an overview on recent experimental and theoretical results in complex plasmas including liquid-like behavior, crystal formation, structural and dynamic properties. It is expected that many of these effects will be of interest also to researchers in other fields where strong correlations play a prominent role.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据