4.7 Article

Levelised cost of energy for offshore floating wind turbines in a life cycle perspective

期刊

RENEWABLE ENERGY
卷 66, 期 -, 页码 714-728

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2014.01.017

关键词

HYWIND II; TLB; WindFloat; LCOE; LCA; Floating wind turbines

向作者/读者索取更多资源

This report presents a comprehensive analysis and comparison of the levelised cost of energy (LCOE) for the following offshore floating wind turbine concepts: Spar-Buoy (Hywind II), Tension-Leg-Spar (SWAY), Semi-Submersible (WindFloat), Tension-Leg-Wind-Turbine (TLWT) and Tension-Leg-Buoy (TLB). The analysis features a generic commercial wind farm consisting of 100 five megawatt turbines, at a far offshore site in a Life Cycle Analysis (LCA) perspective. Data for existing bottom-fixed turbines, both jacket and monopile concepts are used as reference values for adaptation to the generic wind farm parameters. The results indicate that LCOE values are strongly dependent on depth and distance from shore, due to mooring costs and export cable length, respectively. Based on the findings, depth is the dominant parameter to determine the optimal concept for a site. Distance to shore, Load Factor and availability are amongst the significant factors affecting the LCOE. The findings also indicate that LCOE of floating turbines applied in large scale and in intermediate depths of 50-150 m is comparable to bottom-fixed turbines. Floating turbines for increasing depths generally experience increased LCOE at a lower rate than bottom-fixed turbines. An optimal site, situated 100 km offshore would give LCOE in the range of (sic) 82.0-(sic) 236.7 per megawatt-hour for the conceptual designs in this paper. (c) 2014 The Authors. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据