4.7 Article

Performance analysis of a novel dual-nozzle ejector enhanced cycle for solar assisted air-source heat pump systems

期刊

RENEWABLE ENERGY
卷 63, 期 -, 页码 735-740

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2013.10.030

关键词

Solar energy; Heat pump; Air-source; Ejector; Performance; Enhancement

向作者/读者索取更多资源

In this study, a novel dual-nozzle ejector enhanced vapor-compression cycle (DEVC) for solar assisted air-source heat pump systems is proposed. In DEVC, the use of the dual-nozzle ejector for recovering the expansion losses is a very promising approach to improve the cycle performance. A mathematical model of the DEVC is developed to predict its performance under specified operating conditions. The simulation results indicate that for the range of given operating conditions, the coefficient of performance (COP) and the volumetric heating capacity of the novel cycle using refrigerant R410A are theoretically improved by 4.60-34.03% and 7.81-51.95% over conventional ejector enhanced vapor-compression cycle (CEVC), respectively. The results imply that the solar-air source heat pump systems could take advantage of the best features of the DEVC. The potential use of DEVC therefore deserves further experimental validation. It is expected that this new cycle will be beneficial to developing dual-source coupled heat pump applications. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据