4.7 Article

Optimal design of a reliable hydrogen-based stand-alone wind/PV generating system, considering component outages

期刊

RENEWABLE ENERGY
卷 34, 期 11, 页码 2380-2390

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2009.03.020

关键词

Hybrid PV/WG systems; Hydrogen-based storage system; Forced outage rate; Optimal design; Particle swarm optimization; Reliability

向作者/读者索取更多资源

A hybrid wind/photovoltaic/fuel cell generation system is designed to supply power demand. The aim of this design is minimization of annualized cost of the hybrid system over its 20 years of operation. Optimization problem is subject to reliable supply of the demand. Three major components of the system, i.e. wind turbine generators, photovoltaic arrays, and DC/AC converter, may be subject to failure. Also, solar radiation, wind speed, and load data are assumed entirely deterministic. System costs involve investments, replacement, and operation and maintenance as well as loss of load costs. Prices are all empirical and components are commercially available. An advanced variation of Particle Swarm Optimization algorithm is used to solve the optimization problem. Results reveal the impact of component outages on the reliability and cost of the system, so they are directly dependent on components' reliabilities, i.e. outages result in need for a larger generating system for supplying the load with the acceptable reliability. Additionally, it is observed that the inverter's reliability is an upper limit for the system's reliability. Moreover, an approximate method for reliability evaluation of the hybrid system is proposed which considerably reduces the time and computations. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据