4.8 Review

Review of high-temperature central receiver designs for concentrating solar power

期刊

RENEWABLE & SUSTAINABLE ENERGY REVIEWS
卷 29, 期 -, 页码 835-846

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rser.2013.08.099

关键词

Concentrating solar; Receiver; Volumetric; External; Cavity; Solid particle

资金

  1. U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]

向作者/读者索取更多资源

This paper reviews central receiver designs for concentrating solar power applications with high-temperature power cycles. Desired features include low-cost and durable materials that can withstand high concentration ratios (similar to 1000 suns), heat-transfer fluids that can withstand temperatures > 650 degrees C, high solar absorptance, and low radiative and convective heat losses leading to a thermal efficiency > 90%. Different receiver designs are categorized and evaluated in this paper: (1) gas receivers, (2) liquid receivers, and (3) solid particle receivers. For each design, the following information is provided: general principle and review of previous modeling and testing activities, expected outlet temperature and thermal efficiency, benefits, perceived challenges, and research needs. Emerging receiver designs that can enable higher thermal-to-electric efficiencies (50% or higher) using advanced power cycles such as supercritical CO2 closed-loop Brayton cycles include direct heating of CO2 in tubular receiver designs (external or cavity) that can withstand high internal fluid pressures (similar to 20 MPa) and temperatures (similar to 700 degrees C). Indirect heating of other fluids and materials that can be stored at high temperatures such as advanced molten salts, liquid metals, or solid particles are also being pursued, but challenges include stability, heat loss, and the need for high-temperature heat exchangers. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据