4.8 Review

The energy and water nexus in Chinese electricity production: A hybrid life cycle analysis

期刊

RENEWABLE & SUSTAINABLE ENERGY REVIEWS
卷 39, 期 -, 页码 342-355

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rser.2014.07.080

关键词

Electricity generation technologies; Hybrid life-cycle analysis; CO2 emissions; Water scarcity; China

向作者/读者索取更多资源

Between 2000 and 2010, China's electricity production had increased threefold and accounted for 50% of domestic and 12% of global CO2 emissions in 2010. Substantial changes in the electricity fuel mix are urgently required to meet China's carbon intensity target of reducing CO2 emissions by 40-45% by 2020. Moreover, electricity production is the second largest consumer of water in China, but water requirements vary significantly between different electricity generation technologies. By integrating process-based life-cycle analysis (LCA) and input-output analysis (IOA) and through tracking national supply chains, we have provided a detailed account of total life-cycle carbon emissions (g/kWh) and water consumption (I/kWh) for eight electricity generation technologies - (pulverized) coal, gas, oil, hydro, nuclear, wind, solar photovoltaic, and biomass. We have demonstrated that a shift to low carbon renewable electricity generation technologies, i.e. wind, could potentially save more than 79% of total life-cycle CO2 emissions and more than 50% water consumption per kWh electricity generation compared to the current fuel mix and technology for electricity generation. If the projected wind farms are built by 2020, Inner Mongolia, one of the water scarce northern provinces, would annually save 179 MT CO2 (i.e. 44% of Inner Mongolia's total CO2 emissions in 2008) and 418 million m(3) (Mm(3)) water (18% of its industrial water use in 2008) compared with the same amount of electricity produced from coal. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据