4.8 Review

Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy

期刊

RENEWABLE & SUSTAINABLE ENERGY REVIEWS
卷 15, 期 1, 页码 1-23

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rser.2010.07.014

关键词

Sustainable fuel; Hydrocarbon fuel; Carbon dioxide recycling; Electrolysis; Energy balance; Economics

资金

  1. American Chemical Society
  2. Lenfest Center
  3. Programme Commission on Sustainable Energy and Environment
  4. Danish Council

向作者/读者索取更多资源

To improve the sustainability of transportation, a major goal is the replacement of conventional petroleum-based fuels with more sustainable fuels that can be used in the existing infrastructure (fuel distribution and vehicles). While fossil-derived synthetic fuels (e.g. coal derived liquid fuels) and biofuels have received the most attention, similar hydrocarbons can be produced without using fossil fuels or biomass. Using renewable and/or nuclear energy, carbon dioxide and water can be recycled into liquid hydrocarbon fuels in non-biological processes which remove oxygen from CO2 and H2O (the reverse of fuel combustion). Capture of CO2 from the atmosphere would enable a closed-loop carbon-neutral fuel cycle. This article critically reviews the many possible technological pathways for recycling CO2 into fuels using renewable or nuclear energy, considering three stages-CO2 capture, H2O and CO2 dissociation, and fuel synthesis. Dissociation methods include thermolysis, thermochemical cycles, electrolysis, and photoelectrolysis of CO2 and/or H2O. High temperature co-electrolysis of H2O and CO2 makes very efficient use of electricity and heat (near-100% electricity-to-syngas efficiency), provides high reaction rates, and directly produces syngas (CO/H-2 mixture) for use in conventional catalytic fuel synthesis reactors. Capturing CO2 from the atmosphere using a solid sorbent, electrolyzing H2O and CO2 in solid oxide electrolysis cells to yield syngas, and converting the syngas to gasoline or diesel by Fischer-Tropsch synthesis is identified as one of the most promising, feasible routes. An analysis of the energy balance and economics of this CO2 recycling process is presented. We estimate that the full system can feasibly operate at 70% electricity-to-liquid fuel efficiency (higher heating value basis) and the price of electricity needed to produce synthetic gasoline at U.S.D$ 2/gal ($ 0.53/L) is 2-3 U.S. cents/kWh. For $ 3/gal ($ 0.78/L) gasoline, electricity at 4-5 cents/kWh is needed. In some regions that have inexpensive renewable electricity, such as Iceland, fuel production may already be economical. The dominant costs of the process are the electricity cost and the capital cost of the electrolyzer, and this capital cost is significantly increased when operating intermittently (on renewable power sources such as solar and wind). The potential of this CO2 recycling process is assessed, in terms of what technological progress is needed to achieve large-scale, economically competitive production of sustainable fuels by this method. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据