4.7 Article

A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET

期刊

REMOTE SENSING OF ENVIRONMENT
卷 139, 期 -, 页码 35-49

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2013.07.013

关键词

Remotely sensed evapotranspiration (ET); modeling; MODIS based ET models (MOD16 and SSEBop); Multi-scale ET validation; Accuracy and uncertainty estimation

资金

  1. U.S. Geological Survey (USGS) [G08PC91508, G1 OPC00044]

向作者/读者索取更多资源

Remote sensing datasets are increasingly being used to provide spatially explicit large scale evapotranspiration (ET) estimates. Extensive evaluation of such large scale estimates is necessary before they can be used in various applications. In this study, two monthly MODIS 1 km ET products, MODIS global ET (MOD16) and Operational Simplified Surface Energy Balance (SSEBop) ET, are validated over the conterminous United States at both point and basin scales. Point scale validation was performed using eddy covariance FLUXNET ET (FLET) data (2001-2007) aggregated by year, land cover, elevation and climate zone. Basin scale validation was performed using annual gridded FLUXNET ET (GFET) and annual basin water balance ET (WBET) data aggregated by various hydrologic unit code (HUC) levels. Point scale validation using monthly data aggregated by years revealed that the MOD16 ET and SSEBop Er products showed overall comparable annual accuracies. For most land cover types, both ET products showed comparable results. However, SSEBop showed higher performance for Grassland and Forest classes; MOD16 showed improved performance in the Woody Savanna class. Accuracy of both the Er products was also found to be comparable over different climate zones. However, SSEBop data showed higher skill score across the climate zones covering the western United States. Validation results at different HUC levels over 2000-2011 using GFET as a reference indicate higher accuracies for MOD16 ET data. MOD16, SSEBop and GFET data were validated against WBET (2000-2009), and results indicate that both MOD16 and SSEBop ET matched the accuracies of the global GFET dataset at different HUC levels. Our results indicate that both MODIS ET products effectively reproduced basin scale ET response (up to 25% uncertainty) compared to CONUS-wide point-based Er response (up to 50-60% uncertainty) illustrating the reliability of MODIS ET products for basin-scale Er estimation. Results from this research would guide the additional parameter refinement required for the MOD16 and SSEBop algorithms in order to further improve their accuracy and performance for agro-hydrologic applications. Published by Elsevier Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据