4.7 Article

Mapping the Buraburi granite in the Himalaya of Western Nepal: Remote sensing analysis in a collisional belt with vegetation cover and extreme variation of topography

期刊

REMOTE SENSING OF ENVIRONMENT
卷 115, 期 5, 页码 1129-1144

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2010.12.016

关键词

ASTER; Band ratio; Geologic mapping; Granite; Himalaya; Lichens; Multispectral; Muscovite; Nepal; Remote sensing; PCA

资金

  1. PRIN
  2. CARIPARO

向作者/读者索取更多资源

The aim of the present study is to define the most suitable methodologies for ASTER data pre-processing and analysis in order to enhance peraluminous granitoid rocks in rugged and vegetated areas. The research started with raw image data pre-processing and continued with a comparison of satellite. field and laboratory data. The masking technique adopted to isolate rocky pixels was of fundamental importance to perform further analysis. An integration of density-sliced images and false colour composite images of Band Ratio, Relative Absorption Band Depth and Principal Component Analysis allowed us to generate a geological map that highlights a new granitoid body (Buraburi Granite) and the surrounding host rocks in the Dolpo region (western Nepal). The Buraburi Granite was mapped and sampled integrating remotely sensed ASTER data with analysis of rocks and minerals spectral signatures. The innovative approach that we have adopted considers the absorption features of particular lichen species (acidophilic). The results highlight the importance of considering acidophilic lichen means of detecting granitoid rocks. Furthermore, since peraluminous granitoids (i.e. Buraburi granite) have a considerable Al2O3 bulk rock content, the Muscovite Al-OH absorption peaks centred in the 6th ASTER band were also considered an important parameter for their detection. Field observations confirm the results of remote sensing analysis showing the intrusive relationship between the newly discovered 110 km(2) granitoid body and the wall rocks of the Higher Himalayan Crystalline and the Tibetan Sedimentary Sequence. In conclusion, the proposed methods have great potential for granitoid mapping in vegetated and rough terrains, particularly those with climatic and geological conditions similar to the ones of the Southern Himalayan belt. (C) 2011 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据