4.7 Article

Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data

期刊

REMOTE SENSING OF ENVIRONMENT
卷 114, 期 12, 页码 2875-2887

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2010.07.005

关键词

Agricultural drought; Arid regions; Humid regions; MODIS; TRMM; Data fusion

向作者/读者索取更多资源

While existing remote sensing-based drought indices have characterized drought conditions in arid regions successfully, their use in humid regions is limited. We propose a new remote sensing-based drought index, the Scaled Drought Condition Index (SDCI), for agricultural drought monitoring in both arid and humid regions using multi-sensor data. This index combines the land surface temperature (LST) data and the Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, and precipitation data from Tropical Rainfall Measuring Mission (TRMM) satellite. Each variable was scaled from 0 to 1 to discriminate the effect of drought from normal conditions, and then combined with the selected weights. When tested against in-situ Palmer Drought Severity Index (PDSI), Palmer's Z-Index (Z-Index), 3-month Standardized Precipitation Index (SPI), and 6-month SPI data during a ten-year (2000-2009) period, SDCI performed better than existing indices such as NDVI and Vegetation Health Index (VHI) in the arid region of Arizona and New Mexico as well as in the humid region of North Carolina and South Carolina. The year-to-year changes and spatial distributions of SDCI over both arid and humid regions generally agreed to the changes documented by the United States Drought Monitor (USDM) maps. (C) 2010 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据