4.7 Article

Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing

期刊

REMOTE SENSING OF ENVIRONMENT
卷 113, 期 1, 页码 40-49

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2008.08.010

关键词

MODIS; TRMM; Snow cover; Runoff; Climate Change; Indus; Himalaya

资金

  1. Netherlands Organisation for Scientific Research (NWO) through a CASIMIR [018 003 002]

向作者/读者索取更多资源

Various remote sensing products are used to identify spatial-temporal trends in snow cover in river basins originating in the Himalayas and adjacent Tibetan-Qinghai plateau. It is shown that remote sensing allows detection of spatial-temporal patterns of snow cover across large areas in inaccessible terrain, providing useful information on a critical component of the hydrological cycle. Results show large variation in snow cover between years while an increasing trend from west to east is observed. Of all river basins the Indus basin is, for its water resources, most dependent on snow and ice melt and large parts are snow covered for prolonged periods of the year. A significant negative winter snow cover trend was identified for the upper Indus basin. For this basin a hydrological model is used and forced with remotely sensed derived precipitation and snow cover. The model is calibrated using daily discharges from 2000 to 2005 and stream flow in the upper Indus basin can be predicted with a high degree of accuracy. From the analysis it is concluded that there are indications that regional warming is affecting the hydrology of the upper Indus basin due to accelerated glacial melting during the simulation period. This warming may be associated with global changes in air temperature resulting from anthropogenic forcings. This conclusion is primarily based on the observation that the average annual precipitation over a five year period is less than the observed stream flow and supported by positive temperature trends in all seasons. (C) 2008 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据