4.7 Article

Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data

期刊

REMOTE SENSING OF ENVIRONMENT
卷 112, 期 5, 页码 2341-2353

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2007.11.001

关键词

vegetation indices; multiangular remote sensing; narrowband indices; light use efficiency; coniferous canopy; reflectance anisotropy; Photochemical Reflectance Index

向作者/读者索取更多资源

View angle effects present in spectral vegetation indices can either be regarded as an added source of uncertainty for variable retrieval or as a Source of additional information, enhancing the variable retrieval; however, the magnitude of these angular effects remains for most indices unknown or unquantified. We use the ESA-mission CHRIS-PROBA (Compact High Resolution Imaging Spectrometer onboard the Project for On-board Autonomy) providing spaceborne imaging spectrometer and multiangular data to assess the reflectance anisotropy of broadband as well as recently developed narrowband indices, Multiangular variability of Hemispherical Directional Reflectance Factor (HDRF) is a prime factor determining the indices' angular response. Two contrasting structural vegetation types, pine forest and meadow, were selected to study the effect of reflectance anisotropy on the angular response. Calculated indices were standardized and statistically evaluated for their varying HDRF. Additionally we employ a coupled radiative transfer model (PROSPECT/FLIGHT) to quantify and substantiate the findings beyond an incidental case study. Nearly all tested indices manifested a prominent anisotropic behaviour. Apart from the conventional broadband greenness indices [e.g. Simple Ratio Index (SRI), Normalized Difference Vegetation Index (NDVI)], light use efficiency and leaf pigment indices [e.g. Structure Insensitive Pigment Index (SIPI), Photochemical Reflectance Index (PRI) and Anthocyanin Reflectance Index (ARI)] did express significant different angular responses depending on the vegetation type. Following the quantification of the impact, we conclude that the angular-dependent fraction of non-photosynthetic material is of critical importance shaping the angular signature of these VIs. This work highlights the influence of viewing geometry and surface reflectance anisotropy, particularly when using light use efficiency and leaf pigment indices. (C) 2007 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据