4.7 Article

Appropriate scale of soil moisture retrieval from high resolution radar imagery for bare and minimally vegetated soils

期刊

REMOTE SENSING OF ENVIRONMENT
卷 112, 期 2, 页码 403-414

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2007.06.021

关键词

radar; soil moisture; scale

向作者/读者索取更多资源

This research investigates the appropriate scale for watershed averaged and site specific soil moisture retrieval from high resolution radar imagery. The first approach involved filtering backscatter for input to a retrieval model that was compared against field measures of soil moisture. The second approach involved spatially averaging raw and filtered imagery in an image-based statistical technique to determine the best scale for site-specific soil moisture retrieval. Field soil moisture was measured at 1225 m(2) sites in three watersheds commensurate with 7 m resolution Radarsat image acquisition. Analysis of speckle reducing block median filters indicated that 5 x 5 filter level was the optimum for watershed averaged estimates of soil moisture. However, median filtering alone did not provide acceptable accuracy for soil moisture retrieval on a site-specific basis. Therefore, spatial averaging of unfiltered and median filtered power values was used to generate backscatter estimates with known confidence for soil moisture retrieval. This combined approach of filtering and averaging was demonstrated at watersheds located in Arizona (AZ), Oklahoma (OK) and Georgia (GA). The optimum ground resolution for AZ, OK and GA study areas was 162 m, 310 m, and 1131 m respectively obtained with unfiltered imagery. This statistical approach does not rely on ground verification of soil moisture for validation and only requires a satellite image and average roughness parameters of the site. When applied at other locations, the resulting optimum ground resolution will depend on the spatial distribution of land surface features that affect radar backscatter. This work offers insight into the accuracy of soil moisture retrieval, and an operational approach to determine the optimal spatial resolution for the required application accuracy. Published by Elsevier Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据