4.7 Article

The role of environmental context in mapping invasive plants with hyperspectral image data

期刊

REMOTE SENSING OF ENVIRONMENT
卷 112, 期 12, 页码 4301-4317

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2008.07.016

关键词

HyMap; Hyperspectral imaging; Invasive plant species; Lepidium latifolium; Mixture tuned matched filtering (MTMF); Perennial pepperweed; Remote sensing; Weed mapping

资金

  1. California Bay-Delta Authority [U-04-SC-005, ERP-01-NO1, ERP-02D-P66]

向作者/读者索取更多资源

Lepidium latifolium (perennial pepperweed) is a noxious Eurasian weed invading riparian and wetland areas of the western US. Effective management of Lepidium requires detailed, accurate maps of its distribution, as may be provided by remote sensing, to contain existing infestations and eradicate incipient populations. We mapped Lepidium with 3 m spatial resolution, 128-band HyMap image data in three sites of California's San Francisco Bay/Sacramento-San Joaquin Delta Estuary (Rush Ranch in Suisun Marsh and the Greater Jepson Prairie Ecosystem and the Cosumnes River Preserve in the Delta). These sites are markedly different in terms of hydrology, salinity, species composition, and structural and landscape diversity. Aggregated classification and regression tree models (CART), incorporating the results of mixture tuned matched filter (MTMF) analyses and spectral physiological indexes, were used to map Lepidium at the three sites. This approach was sufficiently flexible and robust to detect Lepidium with similar accuracies (similar to 90%) at both Rush Ranch and Jepson Prairie, but was unsuccessful at Cosumnes River Preserve. Comparisons of the behavior of the MTMFs and the CARTs between sites reveal the importance of environmental context in species mapping. Rush Ranch presents the simplest conditions for mapping Lepidium: it is the wettest and least diverse site and Lepidium is spectrally distinct from co-occurring species. At Jepson Prairie, several co-occurring species closely resemble Lepidium spectrally. Nevertheless, hyperspectral data provide sufficient spectral detail to resolve Lepidium even at this challenging site, which is facilitated by phenological separation from the matrix of annual grasses. At Cosumnes River Preserve, however, Lepidium is neither spectrally nor phenologically distinct, and consequently could not be mapped successfully. Evidence suggests that the success of a remote sensing analysis declines as site complexity increases (species, structural, and landscape diversity; spectral variability; etc.), although this relationship is complex, indirect, and may be phenology-dependent. (C) 2008 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据