4.2 Article

Baclofen-Loaded Poly (D,L-Lactide-Co-Glycolic Acid) Nanoparticles for Neuropathic Pain Management: In Vitro and In Vivo Evaluation

期刊

REJUVENATION RESEARCH
卷 22, 期 3, 页码 235-245

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/rej.2018.2119

关键词

baclofen; biodistribution; gamma scintigraphy; nanoparticles; PLGA

向作者/读者索取更多资源

In this work, poly (D,L-lactide-co-glycolic acid) (PLGA) nanoparticles of baclofen (Bcf-PLGA-NPs) were developed and optimized using nanoprecipitation method. The average particle size of the Bcf-PLGA-NP was found to be 124.8nm, polydispersity index of 0.225, and zeta potential was found to be in the range of -20.4mV. In vitro dissolution studies showed that Bcf was released from PLGA NPs in a sustained manner from 50% release in 2.5 hours to 80%-85% in 24 hours. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on Neuro-2a neuroblastoma cell line showed comparably low cytotoxicity of Bcf-PLGA-NPs as compared with aqueous solution of Bcf at reported C-max values of the drug. To explore the nose-to-brain pathway, in vivo studies were carried out in Sprague-Dawley rats by radiolabeling of Bcf with technetium-99m (Tc-99m). Gamma scintigraphy images of the rats that were administered through intranasal (i.n.) route showed the maximum uptake of radiolabeled NPs from nose to brain at 3 hours as compared with the rats administered with NPs intravenously and orally. To assess the Bcf concentration in brain and blood, biodistribution studies were performed and following i.n. route the NPs were dispersed in brain (3.5%/g) and blood (3%/g) at 3 hours, and these observations were in agreement with the gamma scintigrams. Hence, from the results it was suggested that the developed PLGA NPs could serve as a potential carrier for the Bcf in the treatment of neuropathic pain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据