4.0 Article Proceedings Paper

High-Content Assay Multiplexing for Toxicity Screening in Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Hepatocytes

期刊

ASSAY AND DRUG DEVELOPMENT TECHNOLOGIES
卷 13, 期 9, 页码 529-546

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/adt.2015.659

关键词

-

资金

  1. U.S. Environmental Protection Agency [STAR RD83516601, RD83574701]
  2. Society of Toxicology-Colgate Palmolive

向作者/读者索取更多资源

Cell-based high-content screening (HCS) assays have become an increasingly attractive alternative to traditional in vitro and in vivo testing in pharmaceutical drug development and toxicological safety assessment. The time- and cost-effectiveness of HCS assays, combined with the organotypic nature of human induced pluripotent stem cell (iPSC)-derived cells, open new opportunities to employ physiologically relevant in vitro model systems to improve screening for potential chemical hazards. In this study, we used two human iPSC types, cardiomyocytes and hepatocytes, to test various high-content and molecular assay combinations for their applicability in a multiparametric screening format. Effects on cardiomyocyte beat frequency were characterized by calcium flux measurements for up to 90min. Subsequent correlation with intracellular cAMP levels was used to determine if the effects on cardiac physiology were G-protein-coupled receptor dependent. In addition, we utilized high-content cell imaging to simultaneously determine cell viability, mitochondrial integrity, and reactive oxygen species (ROS) formation in both cell types. Kinetic analysis indicated that ROS formation is best detectable 30min following initial treatment, whereas cytotoxic effects were most stable after 24h. For hepatocytes, high-content imaging was also used to evaluate cytotoxicity and cytoskeletal integrity, as well as mitochondrial integrity and the potential for lipid accumulation. Lipid accumulation, a marker for hepatic steatosis, was most reliably detected 48h following treatment with test compounds. Overall, our results demonstrate how a compendium of assays can be utilized for quantitative screening of chemical effects in iPSC cardiomyocytes and hepatocytes and enable rapid and cost-efficient multidimensional biological profiling of toxicity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据