4.4 Article

Quantitative profiling of SiGe/Si superlattices by time-of-flight secondary ion mass spectrometry: the advantages of the extended Full Spectrum protocol

期刊

RAPID COMMUNICATIONS IN MASS SPECTROMETRY
卷 25, 期 5, 页码 629-638

出版社

WILEY
DOI: 10.1002/rcm.4904

关键词

-

向作者/读者索取更多资源

The abundance of work on SiGe-based devices demonstrates the importance of the compositional characterization of such materials. However, Secondary Ion Mass Spectrometry (SIMS) characterization of SiGe layers often suffers from matrix effects due to the non-linear variation of ionization yields with Ge content. Several solutions have been proposed in order to overcome this problem, each having its own limitations such as a restricted germanium concentration range, or a weak sensitivity to dopants or impurities. Here, we studied the improvements brought by an alternative protocol: the extended Full Spectrum protocol, which states proportionality between the composition of the secondary ion beam and that of the actual material. Previous studies on this protocol showed that it was extremely precise and reproducible for Ge quantification in a permanent regime, because of minimized matrix effects. In this study we thus investigated its accuracy for the simultaneous quantitative depth profiling of both matrix elements (Si, Ge) and impurities (B, C or P) in strained SiGe/Si superlattices by comparing results with those from more classic protocols. The profiles provided by the extended Full Spectrum protocol were found to be accurate, and to exhibit better properties than classic protocols in terms of signal/noise ratio and signal stability, along with a slight enhancement in depth resolution. Copyright (C) 2011 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据