4.4 Article

Highly sensitive localization analysis of gangliosides and sulfatides including structural isomers in mouse cerebellum sections by combination of laser microdissection and hydrophilic interaction liquid chromatography/electrospray ionization mass spectrometry with theoretically expanded multiple reaction monitoring

期刊

RAPID COMMUNICATIONS IN MASS SPECTROMETRY
卷 24, 期 20, 页码 2957-2965

出版社

WILEY
DOI: 10.1002/rcm.4716

关键词

-

资金

  1. Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST)

向作者/读者索取更多资源

Liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) is suitable for analysis of glycosphingolipids such as fragile gangliosides avoiding the use of the sialic acid elimination. However, it was not possible to distinguish the structural isomers such as GD1a and GD1b with reversed-phase LC/ESI-MS by hydrophobic interaction. Here we report an effective method for targeted analysis of theoretically expanded ganglioside molecular species including structural isomers by hydrophilic interaction liquid chromatography (HILIC)/ESI-MS with multiple reaction monitoring (MRM). As a result of MRM analysis of glycosphingolipid mixtures from porcine brain, each of the lipid classes was detected within 25 min in the following order: sulfatides > GM3 > GM2 > GM1 > GD3 > GD1a > GD2 > GD1b > GT1a > GT1b > GQ1b. For the advanced application, localization analysis of postnatal day 15 (P15) mouse cerebellum layered structures was carried out by combination of MRM and laser microdissection (LMD). As a result, GM3, GD1a, GT1b and GQ1b were abundantly detected in the molecular and granular layers, whereas GM1 was widely presented in each layered structure. These gangliosides were mainly composed of d18:1-18:0 and d18:1-20:0, but GM3 was d18:1-16:0 and d18:1-20:0. Meanwhile, sulfatide molecular species were mostly localized in the myelinated fibers and scarcely found in the molecular layer. These results suggested that our method is suitable to detect a variety of ganglioside classes and sulfatides with high sensitivity at the molecular species level and effective for localization analysis of these glycosphingolipids from mouse brain sections. Copyright (C) 2010 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据