4.4 Article

Are liquid chromatography/electrospray tandem quadrupole fragmentation ratios unequivocal confirmation criteria?

期刊

RAPID COMMUNICATIONS IN MASS SPECTROMETRY
卷 23, 期 7, 页码 985-998

出版社

WILEY
DOI: 10.1002/rcm.3959

关键词

-

向作者/读者索取更多资源

Multiple reaction monitoring (MRM) ratios as provided by tandem mass spectrometers are used to confirm positive residue findings (e.g. veterinary drugs or pesticides). The Commission Decision 2002/657/EEC defines tolerance levels for MRM ratios, which are intended to prevent the reporting of false positives. This paper reports findings where blank sample extracts have been spiked by a drug (difloxacin) and the corresponding measured MRM ratios significantly deviated from MRM ratios observed in matrix-free solution. The observation was explained by the formation of two different [M+H](+) analyte ions within the electrospray ionization (ESI) interface. These two ions vary only by the site of analyte protortation. Since they are isobaric, they are equally transmitted through the first quadrupole, but are differently fragmented in the collision chamber. The existence of two isobaric ions was deduced by statistical data and the observation of a doubly charged analyte ion. It was hypothesized that the combined presence of [M+H](+) and [M+2H](2+) implies the existence of two different singly charged ion species differing only by the site of protonation. Low- and high-energy interface-induced fragmentation was performed on the samples. The surviving precursor ion population was mass selected and again fragmented in the collision chamber. Equal product ion spectra would be expected. However, very different product ion spectra were observed for the two interface regimes. This is consistent with the assumption that the two postulated isobaric precursor ions show different stability in the interface. Hence the abundance ratio among the two types of surviving precursor ions will shift and change the resulting product ion spectra. The existence of the postulated singly charged ions with multiple chargeable sites was finally confirmed by successful ion mobility separation. Copyright (C) 2009 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据