4.4 Article

Electrospray ionization mass spectrometry as a critical tool for revealing new properties of snake venom phospholipase A2

期刊

RAPID COMMUNICATIONS IN MASS SPECTROMETRY
卷 23, 期 8, 页码 1158-1166

出版社

WILEY
DOI: 10.1002/rcm.3996

关键词

-

资金

  1. The Educational Departmental of Liaoning Province [2008S077]
  2. Natural Science Foundation of Liaoning Province [20082158]
  3. The Jilin Municipal Government Foundation for Natural Sciences [962907]
  4. The Dalian Municipal Government Foundation for Natural Sciences [2008J22JH014]

向作者/读者索取更多资源

Results from high-performance liquid chromatography/ratio-electrospray ionization tandem mass spectrometry (HPLC/nESI-MS/MS) coupled to two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (2D SDSTAGE) indicated that the monomer and dimer of phospholipase A(2) (PLA(2)) coexisted in crude Chinese Agkistrodon blomhoffii Ussurensis snake venom (ABUSV). Then, an acidic PLA(2) with the accurate molecular mass of 13979.6 Da was purified from ABUSV (mo-ABUSV-aPLA(2)). MS/MS-derived peptides from ABUSV-aPLA(2) were compared with other homologous snake venom PLA(2)s, which in turn showed that ABUSV-aPLA(2) is a novel snake venom PLA(2), Meanwhile, the ABUSV-aPLA(2) dimer (di-ABUSV-aPLA(2)) was also obtained. MS/MS analysis identified the same peptides from di-ABUSV-aPLA(2) as from mo-ABUSV-aPLA(2), which indicates that di-ABUSV-aPLA(2) is a homodimer. One Ca2+ ion is contained per ABUSV-aPLA(2). The Ca2+ ion is critical for both the hydrolytic activity and the structure of ABUSV-aPLA(2). Pro-Q Emerald and Pro-Q Diamond specific glycoprotein and phosphoprotein staining combined with MS/MS analysis indicated that the ABUSV-aPLA(2), is both a glycoprotein and a phosphoprotein, which to Our knowledge is the first such report for a snake venom PLA(2) and thus provides new threads for the study of the functions and structures of snake venom PLA(2)s. One phosphorylation site and the size of the glycan chain are determined by using HPLC/nESI-MS/MS and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS. The delicate utilization of ESI-MS can exert tremendous impact on protein sciences. Copyright (C) 2009 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据