4.4 Article

Characterization of intermediate compounds formed upon photoinduced degradation of quinolones by high-performance liquid chromatography/high-resolution multiple-stage mass spectrometry

期刊

RAPID COMMUNICATIONS IN MASS SPECTROMETRY
卷 22, 期 10, 页码 1533-1552

出版社

WILEY
DOI: 10.1002/rcm.3537

关键词

-

向作者/读者索取更多资源

The paper deals with the photocatalytic transformation of two antibacterial agents, ofloxacin and ciprofloxacin, under simulated solar irradiation using titanium dioxide as photocatalyst. The investigation involved monitoring decomposition of the drugs, identifying intermediate compounds, assessing mineralization, and evaluating the toxicity of drug derivatives. High-resolution mass spectrometry was employed to assess evolution of the photocatalyzed process over time. Respectively 15 and 8 main species were identified after transformation of ofloxacin and ciprofloxacin. Through the full analysis of MS and MS' spectra and a comparison with parent drug fragmentation pathways, the different isomers were characterized. In the ofloxacin molecule, the initial transformation attacks are confined to the piperazine moiety and to the methyl groups, while the fluoroquinolone core is unmodified. Conversely, ciprofloxacin degradation involves two parts of the molecule: the piper-azinic moiety and the quinolone moiety. All these intermediates are easily degraded and by 4h mineralization is complete. Toxicity assays using Vibrio fischeri prove that neither ciprofloxacin nor its intermediates exhibit acute toxicity. In ofloxacin the secondary degradation products exhibit toxicity; a correlation exists between the evolution of the intermediate compounds and the toxicity connected to them. Copyright (C) 2008 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据