4.7 Article Proceedings Paper

Survivin inhibition and DNA double-strand break repair: A molecular mechanism to overcome radioresistance in glioblastoma

期刊

RADIOTHERAPY AND ONCOLOGY
卷 101, 期 1, 页码 51-58

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.radonc.2011.06.037

关键词

Survivin; Glioblastoma; DNA-repair; DNA-PKcs; Apoptosis; Phospho-histone H2AX

向作者/读者索取更多资源

Background and purpose: Gliomas display prime examples of ionizing radiation (IR) resistant tumors. The IAP Survivin is reported to be critically involved in radiation resistance by anti-apoptotic and by caspase-independent mechanisms. The present study aimed to elucidate an interrelationship between Survivin's cellular localization and DNA damage repair in glioma cells. Material and methods: Cellular distribution and nuclear complex formation were assayed by immunoblotting, immunofluorescence staining and co-immunoprecipitation of Survivin bound proteins in LN229 glioblastoma cells. Apoptosis induction, survival and DNA repair following IR were assayed by means of caspase3/7 activity, clonogenic assay, gamma-H2AX/53BP1 foci formation, single cell gel electrophoresis assay, and DNA-PKcs kinase assay in the presence of Survivin siRNA or over expression of Survivin-GFP. Results: Following irradiation, we observed a nuclear accumulation and a direct interrelationship between Survivin, MDC1, gamma-H2AX, 53BP1 and DNA-PKcs, which was confirmed by immunofluorescence co-localization. Survivin downregulation by siRNA resulted in an increased apoptotic fraction, decreased clonogenic survival and increased DNA-damage, as demonstrated by higher amount of DNA breaks and an increased amount of gamma-H2AX/53BP1 foci post irradiation. Furthermore, we detected in Survivin-depleted LN229 cells a hampered S2056 (auto)phosphorylation and a significantly decreased DNA-PKcs kinase activity. Conclusion: Nuclear accumulation of Survivin and interaction with components of the DNA-double-strand break (DSB) repair machinery indicates Survivin to regulate DSB damage repair that leads to a significant improvement of survival of LN229 glioblastoma cells. (C) 2011 Elsevier Ireland Ltd. All rights reserved. Radiotherapy and Oncology 101 (2011) 51-58

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据