4.7 Article

Improved Pediatric MR Imaging with Compressed Sensing

期刊

RADIOLOGY
卷 256, 期 2, 页码 607-616

出版社

RADIOLOGICAL SOC NORTH AMERICA
DOI: 10.1148/radiol.10091218

关键词

-

资金

  1. NCRR NIH HHS [P41 RR09784, P41 RR009784] Funding Source: Medline
  2. NIBIB NIH HHS [R01 EB009690-01A2, R01 EB009690] Funding Source: Medline

向作者/读者索取更多资源

Purpose: To develop a method that combines parallel imaging and compressed sensing to enable faster and/or higher spatial resolution magnetic resonance (MR) imaging and show its feasibility in a pediatric clinical setting. Materials and Methods: Institutional review board approval was obtained for this HIPAA-compliant study, and informed consent or assent was given by subjects. A pseudorandom k-space undersampling pattern was incorporated into a three-dimensional (3D) gradient-echo sequence; aliasing then has an incoherent noiselike pattern rather than the usual coherent fold-over wrapping pattern. This k-space-sampling pattern was combined with a compressed sensing nonlinear reconstruction method that exploits the assumption of sparsity of medical images to permit reconstruction from undersampled k-space data and remove the noiselike aliasing. Thirty-four patients (15 female and 19 male patients; mean age, 8.1 years; range, 0-17 years) referred for cardiovascular, abdominal, and knee MR imaging were scanned with this 3D gradient-echo sequence at high acceleration factors. Obtained k-space data were reconstructed with both a traditional parallel imaging algorithm and the nonlinear method. Both sets of images were rated for image quality, radiologist preference, and delineation of specific structures by two radiologists. Wilcoxon and symmetry tests were performed to test the hypothesis that there was no significant difference in ratings for image quality, preference, and delineation of specific structures. Results: Compressed sensing images were preferred more often, had significantly higher image quality ratings, and greater delineation of anatomic structures (P < .001) than did images obtained with the traditional parallel reconstruction method. Conclusion: A combination of parallel imaging and compressed sensing is feasible in a clinical setting and may provide higher resolution and/or faster imaging, addressing the challenge of delineating anatomic structures in pediatric MR imaging. (C) RSNA, 2010

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据