4.4 Article

A methodology to compute GPS slant total delays in a numerical weather model

期刊

RADIO SCIENCE
卷 47, 期 -, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2011RS004853

关键词

-

向作者/读者索取更多资源

A numerical algorithm based on Fermat's Principle was developed to simulate the propagation of Global Positioning System (GPS) radio signals in the refractivity field of a numerical weather model. The unique in the proposed algorithm is that the ray-trajectory automatically involves the location of the ground-based receiver and the satellite, i.e. the posed two-point boundary value problem is solved by an implicit finite difference scheme. This feature of the algorithm allows the fast and accurate computation of the signal travel-time delay, referred to as Slant Total Delay (STD), between a satellite and a ground-based receiver. We provide a technical description of the algorithm and estimate the uncertainty of STDs due to simplifying assumptions in the algorithm and due to the uncertainty of the refractivity field. In a first application, we compare STDs retrieved from GPS phase-observations at the German Research Centre for Geosciences Potsdam (GFZ STDs) with STDs derived from the European Center for Medium-Range Weather Forecasts analyses (ECMWF STDs). The statistical comparison for one month (August 2007) for a large and continuously operating network of ground-based receivers in Germany indicates good agreement between GFZ STDs and ECMWF STDs; the standard deviation is 0.5% and the mean deviation is 0.1%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据