4.4 Article

Participation of DNA-PKcs in DSB Repair after Exposure to High- and Low-LET Radiation

期刊

RADIATION RESEARCH
卷 174, 期 2, 页码 195-205

出版社

RADIATION RESEARCH SOC
DOI: 10.1667/RR2071.1

关键词

-

资金

  1. Office of Science (BER), U.S. Department of Energy [DE-FG02-05ER64090, DE-A103-05ER64088]
  2. MRC [G0700730] Funding Source: UKRI
  3. Medical Research Council [G0700730] Funding Source: researchfish

向作者/读者索取更多资源

Cellular lesions (e.g. DSBs) are induced into DNA upon exposure to radiation, with DSB complexity increasing with radiation ionization density. Using M059K and M059J human glioblastoma cells (proficient and deficient in DNA-PKcs activity, respectively), we investigated the repair of DNA damage, including DSBs, induced by high- and low-LET radiation [gamma rays, a particles and high-charge and energy (HZE) ions]. In the absence of DNA-PKcs activity, less DSB repair and increased recruitment of RAD51 was seen at 24 h. After exposure to 5 Fe heavy ions, the number of cells with RAD51 tracks was less than the number of cells with gamma-H2AX at 24 h with both cell lines. Using a particles, comparable numbers of cells with visible gamma-H2AX and RAD51 were seen at 24 h in both cell lines. M059J cells irradiated with alpha particles accumulated in S phase, with a greater number of cyclin A and RAD51 co-stained cells seen at 24 h compared with M059K cells, where an S-phase block is absent. It is proposed that DNA-PKcs plays a role in the repair of some frank DSBs, which are longer-lived in NHEJ-deficient cells, and some non-DSB clustered damage sites that are converted into DSBs at replication as the cell cycles through to S phase. (C) 2010 by Radiation Research Society

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据