4.6 Article

Design of modified plastic surfaces for antimicrobial applications: Impact of ionizing radiation on the physical and mechanical properties of polypropylene

期刊

RADIATION PHYSICS AND CHEMISTRY
卷 91, 期 -, 页码 170-179

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.radphyschem.2013.04.034

关键词

Polypropylene; Physical properties; Surface properties; Electron beam irradiation; Adhesion of particles

向作者/读者索取更多资源

Surface modification of polypropylene (PP) sheets was carried out by radiation induced graft polymerization of hydrophilic functional molecules such as N,N-dimethylacrylamide (DMA) and [2-methacryloyloxy)ethyl] trimethylammonium chloride, which is a quaternary ammonium salt (QAS). Polypropylene sheets were activated prior to the grafting reaction by using electron beam radiation. The changes in morphology, crystallinity and tensile parameters like deformation and stress at yield and deformation at break of PP after irradiation were investigated. The results showed that a minor crystalline reorganization takes place during the irradiation of PP at 100 kGy. The grafting has been observed to be strongly dependent on the monomer dilution in the reaction medium. After grafting of QAS (40%) and DMA (20%) it was possible to develop highly hydrophilic surfaces (water contact angle comprised between 30 and 41 degrees). The surfaces of virgin, irradiated and grafted PP were studied using polarized optical microscopy (POM) and scanning electron microscopy (SEM). Spherical particles (i.e. polystyrene or silica beads) adhering to the modified samples were studied according to the surface parameters. Adhesion tests confirmed the strong influence of substrate type (mainly hydrophilicity and roughness) and to a lesser extent underlined the role of electrostatic interactions for the design of plastic surfaces for antimicrobial applications. (c) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据