4.6 Article

Structural and optical characteristics of silver/poly(N-vinyl-2-pyrrolidone) nanosystems synthesized by γ-irradiation

期刊

RADIATION PHYSICS AND CHEMISTRY
卷 81, 期 11, 页码 1720-1728

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.radphyschem.2012.05.019

关键词

Silver nanoparticles; Poly(N-vinyl-2-pyrrolidone); Optical properties; gamma-irradiation

资金

  1. Ministry of Education and Science of the Republic of Serbia [III 45019, III 45005]
  2. International Atomic Energy Agency Vienna [CRP: F23028, 15384]

向作者/读者索取更多资源

Silver nanoparticles (AgNPs) were synthesized in situ by gamma-irradiation using poly(N-vinyl-2-pyrrolidone) (PVP) as a capping agent. The concentration, molecular weight and the structure (crosslinked and interpenetrated network) of PVP were varied, in order to determine the influence of the capping agent in the radiolytic synthesis of the Ag/PVP nanosystems. Transmission electron microscopy (TEM) showed that AgNPs obtained from the solutions containing higher PVP concentration and higher molecular weight were spherical in shape, with narrow size distribution and a diameter of similar to 6 nm, while slightly larger rod-shaped silver agglomerates, with bimodal nanoparticle size distribution and diameters of similar to 10 nm and similar to 20 nm were obtained from the solutions containing lower PVP concentration and lower molecular weight. Strong plasmon coupling and extending of plasmon resonance was observed by UV-vis spectroscopy, as a result of formation of nanorod-like agglomerates. Crosslinked and interpenetrated network did not affect the structure of synthesized AgNPs. Ag/PVP nanocomposite, in the form of thin film, was obtained by solvent evaporation from Ag/PVP colloid solution with 10 wt% of PVP, and characterized by FTIR spectroscopy. The interactions in Ag/PVP nanocomposite are shown to be the result of the coordination bonding between AgNPs and nitrogen from pyrrolidone ring of PVP. The optical properties of investigated Ag/PVP nanosystems, as measured by the values of optical band gap, E-g, are mainly the consequence of the interparticle distance as a result of the concentration and the structure of surrounding PVP macromolecules. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据