4.7 Article

Why so few? Landslides triggered by the 2002 Denali earthquake, Alaska

期刊

QUATERNARY SCIENCE REVIEWS
卷 95, 期 -, 页码 80-94

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.quascirev.2014.04.032

关键词

Earthquake; Landslide; Glacial; Sediment cascade; Denali; Alaska

资金

  1. United Nations University - ITC Center for Spatial Analysis for Disaster Risk Management
  2. Potsdam Research Cluster for Georisk Analysis, Environmental Change and Sustainability (PROGRESS)

向作者/读者索取更多资源

The 2002 M-w 7.9 Denali Fault earthquake, Alaska, provides an unparalleled opportunity to investigate in quantitative detail the regional hillslope mass-wasting response to strong seismic shaking in glacierized terrain. We present the first detailed inventory of similar to 1580 coseismic slope failures, out of which some 20% occurred above large valley glaciers, based on mapping from multi-temporal remote sensing data. We find that the Denali earthquake produced at least one order of magnitude fewer landslides in a much narrower corridor along the fault ruptures than empirical predictions for an M 8 earthquake would suggest, despite the availability of sufficiently steep and dissected mountainous topography prone to frequent slope failure. In order to explore potential controls on the reduced extent of regional coseismic landsliding we compare our data with inventories that we compiled for two recent earthquakes in periglacial and formerly glaciated terrain, i.e. at Yushu, Tibet (M-w 6.9, 2010), and Aysen Fjord, Chile (2007 M-w 6.2). Fault movement during these events was, similarly to that of the Denali earthquake, dominated by strike-slip offsets along near-vertical faults. Our comparison returns very similar coseismic landslide patterns that are consistent with the idea that fault type, geometry, and dynamic rupture process rather than widespread glacier cover were among the first-order controls on regional hillslope erosional response in these earthquakes. We conclude that estimating the amount of coseismic hillslope sediment input to the sediment cascade from earthquake magnitude alone remains highly problematic, particularly if glacierized terrain is involved. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据