4.6 Article

Model simulation of gravity waves triggered by a density current

期刊

出版社

WILEY-BLACKWELL
DOI: 10.1002/qj.2004

关键词

mesoscale disturbances; numerical simulation; PBL schemes; WRF model

资金

  1. Spanish Government [CGL 2009-12797-C03-02, CGL 2009-12797-C03-03]

向作者/读者索取更多资源

In this study, starting from an observational case of internal gravity waves (IGWs) generated at the top of a drainage flow during the SABLES2006 field campaign, we aim to reproduce the IGWs and their origin through mesoscale meteorological modelling. We used the Weather Research and Forecast (WRF) model with fine horizontal resolution (1 km), testing the model capabilities to simulate the IGWs through a WRF fixed physics package option but two different planetary boundary layer schemes, the Mellor-Yamada-Janji (MYJ) and the Yonsei University (YSU). The comparison between model simulations and measurements from a 100 m meteorological tower reveals that the MYJ scheme simulation gives much better results, as it better represents the main features of the density current measured by the tower instruments, although the event is predicted to occur sooner than it is observed to occur. The study has also shown the capacity of this scheme to detect the oscillations in temperature and specific humidity generated by the arrival of the density current. In contrast, the YSU scheme captures the arrival of the current on time but it fails to correctly track its properties and therefore it does not reproduce the gravity waves with the current arrival. In addition, wave parameters calculated from model outputs (MYJ) using the wavelet method reveal waves with longer periods and longer wavelengths (T = 2022 min and = 810 km) than those calculated from measurements (T = 9.2 min and = 3.5 km) using the same technique. Copyright (c) 2012 Royal Meteorological Society

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据