4.6 Article

A 'hurricane-like' polar low fuelled by sensible heat flux: high-resolution numerical simulations

期刊

出版社

WILEY
DOI: 10.1002/qj.1876

关键词

polar lows; numerical experiments; air-sea interactions; upper-level forcing

资金

  1. Norwegian Research Council [175992]
  2. NERC [bas0100023] Funding Source: UKRI
  3. Natural Environment Research Council [bas0100023] Funding Source: researchfish

向作者/读者索取更多资源

An unusually deep (961 hPa) hurricane-like polar low over the Barents Sea during 1821 December 2002 is studied by a series of fine-mesh (3 km) experiments using the Weather Research and Forecasting (WRF) model. The simulated polar low was similar to hurricanes and similar previous case-studies in that it had a clear, calm and warm eye structure surrounded by moist convection organized in spiral cloud bands, and the highest surface wind speeds were found in the eye wall. The proximity to the sea ice and the high surface wind speeds (about 25 m s-1) during the deepening stage triggered extremely high surface sensible and latent heat fluxes at the eye wall of about 1200 and 400 W m-2, respectively. As the polar low moved eastward and weakened, maximum surface sensible and latent heat fluxes dropped to about 600 and 300 W m-2, respectively. Two types of sensitivity experiments were designed to analyse the physical properties of the polar low. Firstly, physical processes such as condensational heating and sensible and/or latent heat fluxes were switched offon throughout the simulation. In the second type, these processes were turned offon after the polar low had reached its peak intensity, which minimized the deformation of the polar-low environment, making it suitable to study the direct effect of physical processes on the mature vortex. The experiments suggest that the deepening stage of the polar low was dominated by baroclinic growth and that upper-level potential vorticity forcing contributed throughout its life cycle. After the deepening stage, the baroclinicity vanished and the polar low was fuelled by surface sensible heat fluxes while latent heat fluxes played a minor role. Condensational heating was not essential for the energetics of the polar low. Surprisingly, in experiments where condensational heating was turned off throughout the simulation, the polar low intensified. Copyright (c) 2012 Royal Meteorological Society

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据